Noncommutative Monomial Symmetric Functions
نویسنده
چکیده
This presentation will introduce noncommutative analogs of monomial symmetric functions (and their dual, forgotten symmetric functions). In analogy to the classical theory, expansion of ribbon Schur functions in this basis in nonnegative. Moreover, one can define fundamental noncommutative symmetric functions by analogy with quasi-symmetric theory. The expansion of ribbon Schur functions in this basis is also nonnegative. The availability of monomial basis allows one to prove a noncommutative Cauchy identity as well as study a noncommutative pairing implied by Cauchy identity. Résumé. Cette présentation fera découvrir les analogues non-commutatives des fonctions symétriques monomiales et leurs duales, fonctions symétriques ”forgotten”. De façon identique a la théorie classique, le développement des fonctions Schur rubans dans cette base est non-négatif. Aussi on peut introduire des fonctions fondamentales symétriques comme dans la théorie quasi-symétrique. Le développement des fonctions Schur rubans dans cette base est aussi non-négatif. On peut ainsi demontrer une identité de Cauchy non-commutative et analyser le couplage non-commutatif qui en derive.
منابع مشابه
Noncommutative Analogs of Monomial Symmetric Functions, Cauchy Identity and Hall Scalar Product
Abstract. This paper will introduce noncommutative analogs of monomial symmetric functions and fundamental noncommutative symmetric functions. The expansion of ribbon Schur functions in both of these basis is nonnegative. With these functions at hand, one can derive a noncommutative Cauchy identity as well as study a noncommutative scalar product implied by Cauchy identity. This scalar product ...
متن کاملNoncommutative Symmetric Hall-Littlewood Polynomials
Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will demonstrate introducing a new family of noncommutative symmetric funct...
متن کاملA Bijection between Atomic Partitions and Unsplitable Partitions
In the study of the algebra NCSym of symmetric functions in noncommutative variables, Bergeron and Zabrocki found a free generating set consisting of power sum symmetric functions indexed by atomic partitions. On the other hand, Bergeron, Reutenauer, Rosas, and Zabrocki studied another free generating set of NCSym consisting of monomial symmetric functions indexed by unsplitable partitions. Can...
متن کاملNoncommutative irreducible characters of the symmetric group and noncommutative Schur functions
In the Hopf algebra of symmetric functions, Sym, the basis of Schur functions is distinguished since every Schur function is isomorphic to an irreducible character of a symmetric group under the Frobenius characteristic map. In this note we show that in the Hopf algebra of noncommutative symmetric functions, NSym, of which Sym is a quotient, the recently discovered basis of noncommutative Schur...
متن کاملQuasi-symmetric functions, multiple zeta values, and rooted trees
The algebra Sym of symmetric functions is a proper subalgebra of QSym: for example, M11 and M12 +M21 are symmetric, but M12 is not. As an algebra, QSym is generated by those monomial symmetric functions corresponding to Lyndon words in the positive integers [11, 6]. The subalgebra of QSym ⊂ QSym generated by all Lyndon words other than M1 has the vector space basis consisting of all monomial sy...
متن کامل